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Breaking conjugate pairing in thermostated billiards by a magnetic field

M. Dolowschiák and Z. Kovács
Institute for Theoretical Physics, Eo¨tvös University, Pf. 32, H–1518 Budapest, Hungary

~Received 9 June 2000!

We demonstrate that in the thermostated three-dimensional Lorentz gas, the symmetry of the Lyapunov
spectrum can be broken by adding to the system an external magnetic field not perpendicular to the electric
field. For perpendicular field vectors, there is a Hamiltonian reformulation of the dynamics and the conjugate
pairing rule still holds. This indicates that symmetric Lyapunov spectra have nothing to do with time-reversal
symmetry or reversibility; instead, it seems to be related to the existence of a Hamiltonian connection.

PACS number~s!: 05.45.2a, 05.70.Ln
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I. INTRODUCTION

Thermostated dynamical systems have raised cons
able interest recently as a testing ground for ideas in n
equilibrium statistical mechanics@1#. In particular, questions
concerning the role played by chaotic dynamics in the
pearance of nonequilibrium stationary states in dissipa
systems have been in the focus of research activities@2#. One
of the most remarkable features of these models is that
are dissipativeand time reversal symmetric at the same tim
Some, but not all, thermostated systems have another i
esting common property known as theconjugate pairing rule
~CPR!: the Lyapunov exponents of the system form pa
summing up to the same~negative! value@3#. With the CPR,
one pair of Lyapunov exponents is enough to determine
sum ofall the exponents, which is known to be connected
the transport properties of the system@4#. The CPR is trivi-
ally present in conservative Hamiltonian systems~the sum
being zero due to symplecticity!; however, there is no obvi
ous reason to expect anything similar in dissipative syste
In fact, the CPR in thermostated systems was first discove
by numerical studies@3#.

The simplest system in which the CPR can be checke
the three-dimensional~periodic! Lorentz gas~3DLG!: due to
its three degrees of freedom, it has four nontrivial Lyapun
exponents. Dettmannet al. have shown numerically@5# that
the 3DLG with an external electric field and a Gaussian i
kinetic ~GIK! thermostat exhibits conjugate pairing; late
this was proven analytically for conservative forces a
hard-wall scatterers@6#. It has also been demonstrated@7#
that this system can be connected to a Hamiltonian dyn
ics.

In this paper, we check the effect of an external magn
field on the validity of the CPR in the GIK thermostate
cubic lattice 3DLG. In particular, we will focus on two fea
tures possibly related to the CPR: reversibility~an extension
of time-reversal symmetry! and the existence of a Hami
tonian formulation. Both can be controlled by the directi
of the magnetic field with respect to that of the electric fie
and the lattice. Our numerical results show that the CPR
not affected by breaking reversibility, and it also holds f
cases with perpendicular electric- and magnetic-field vec
for which there is a connection to Hamiltonian dynamic
However, the CPR breaks down for nonperpendicular fie
i.e., in the case when no Hamiltonian connection has b
found.
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In Sec. II, the equations of motion for billiards with a GI
thermostat in magnetic field are presented, together wit
discussion of reversibility and the Hamiltonian connecti
for perpendicular fields. The numerical results for the 3DL
and our conclusions are presented in Secs. III and IV, res
tively.

II. THERMOSTATED BILLIARDS IN MAGNETIC FIELD

A. The dynamics

The kinetic energy of a particle moving under the infl
ence of external fields can be kept constant by adding a
cial frictionlike force to the system. Since this force can
deduced from Gauss’s principle of least constraint, and i
kinetic energy that is kept constant, the technique is ca
the Gaussian isokinetic~GIK! thermostat@1#. In billiards,
this is equivalent of particle momentump changing only in
direction, but not in magnitudep, during the ‘‘free’’ flights
between collisions with the hard-wall boundaries. Choos
the unit of mass to be the mass of the particle, the co
sponding equations of motion are

q̇5p, ṗ5Fe2ap, ~1!

whereq5(x,y,z) is the position of the particle,Fe stands for
the external forces, while the GIK thermostat correspond
the choice

a5
Fep

p2
. ~2!

For simplicity, we will choose length and time units in ou
studies so thatp51, but care must be taken when substitu
ing 1 for p2 in terms likea above, especially in the deriva
tion of tangent space equations for the calculation
Lyapunov exponents.

In our model, the external forceFe contains the~constant!
electric and magnetic fieldsE andB:

Fe5E1p3B ~3!

~we have defined the unit of electric charge to be that of
particle!. The full dynamics also includes the secular col
sions with the hard-wall boundaries, changing the mom
tum pi to pf instantaneously:
7894 ©2000 The American Physical Society
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pf5~ I 22n + n!pi , ~4!

whereI is the (333) identity matrix,n is the normal vector
of the boundary at the collision point, and ‘‘+ ’’ denotes the
diadic product. In our 3DLG, the scatterers are hard sph
of radius R, arranged into a regular cubic lattice with di
tanced between the centers of nearest-neighbor scatte
For simplicity, we choose the length scale so thatR51.

B. Reversibility

Without magnetic field, Eqs.~1! and ~2! ensure time-
reversal symmetry for the dynamics, which means that
each solutionG1(t)5„q(t),p(t)…T there exists another on
tracing the same path backward in time:

G2~ t !5„q~2t !,2p~2t !…T. ~5!

The pairing of solutions by time-reversal symmetry is imp
tant in these models: it is used, e.g., in showing that
average current flows in the direction of the external elec
field @8#. This symmetry cannot hold ifBÞ0, but the more
general property ofreversibility@9# may still be true, depend
ing on the particular choice ofE andB. Reversibility means
the existence of a transformationG in phase space, which i
an involution~i.e., G2 is the identity! mapping each solution
G1(t) to another oneG2(t) in the following manner:

G2~ t !5GG1~2t !. ~6!

In terms of the phase-space flowf t defined by G(t)
5f tG(0), this requirement can be written as

Gf tG5f2t, ~7!

i.e., bracketing the flow byG ‘‘reverses the direction of
time.’’

Ordinary time-reversal symmetry is equivalent toG
5G0 just flippping the direction of the momentum
G0(q,p)5(q,2p)T. For BÞ0, the flow can be reversed b
the transformationGB5MG0, whereM is a mirroring ofq
andp with respect to the plane containingE andB ~the proof
of this statement is left to the Appendix!. In the Lorentz gas,
reversibility of the full dynamics also requires that the inva
ant plane ofM be a symmetry plane of the lattice, too. Th
gives us an easy way to control reversibility in the Loren
gas: choosing directions forE andB in a symmetry plane of
the lattice leads to reversible dynamics, otherwise we h
no reversibility.

C. Hamiltonian formalism

A nontrivial result for GIK thermostated systems witho
magnetic field is that a Hamiltonian formulation of the d
namics exists provided the forceFe is the gradient of a scala
field 2F(q) @7#. Then there is a HamiltonianH(Q,P) so
that the GIK equations of motion for the physical variablesq
andp can be obtained from the canonical equations of m
tion for Q and P through a suitable coordinate transform
tion. It is straightforward to check that the Hamiltonia
H(Q,P)5 1

2 @eFP22e2F# has canonical equations leading
Eq. ~1! if one assumes the transformationsq5Q and p
5eFP. However, it is important to stress that this connect
es

rs.
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-
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holds only if we make explicit use of the constraintp51 and
its equivalentH50 in the GIK and canonical equations, re
spectively.

The extension of the Hamiltonian formulation to cas
with BÞ0 is not as obvious as for conservative systems
cause of the factoreF in front of P2 in the ‘‘kinetic-energy’’
term of the Hamiltonian. Nevertheless, we may still follow
similar route by definingF(q) throughE52“F as usual
and replacingP by P2a(q) in H, where the vectora(q) is
connected to the magnetic field. This leads to the Ham
tonian

HB~Q,P!5 1
2 @eF~P2a!22e2F#. ~8!

A lengthy but straightforward calculation shows@10# that the
canonical equations forHB50 can be connected to the GIK
equations of motion forp51 by the transformation

q5Q, p5eF~P2a! ~9!

if we assume the following relationship betweenB anda:

B5eF rota. ~10!

Note that this is an extension of the usual relationshipB
5rota for the GIK thermostat. However, due to the presen
of eF in Eq. ~10!, we do not necessarily have a solutiona for
arbitrary E and B. Indeed, sinceB must satisfy Maxwell’s
equation divB50, this condition leads to the restrictio
EB50. Therefore, we can use the Hamiltonian formulati
given above only in the case whenB is perpendicular toE.

III. NUMERICAL RESULTS

We have calculated numerically the Lyapunov spectr
of the GIK thermostated 3DLG with constant electric a
magnetic fields. The Lyapunov exponentsl1.l2.•••

.l6 can be measured by following the evolution of a full s
of linearly independent tangent space vectors along a v
long trajectory and applying repeated reorthogonalizat
and rescaling to them; see Ref.@11# for a detailed description
of this method. Collisions were taken into account by t
formula presented in Ref.@12#, with suitable modifications to
include the effect of the magnetic field. In all cases studi
we have obtained finite time exponents converging to th
infinite time limits, as in the example plotted in Fig. 1. Th
fluctuations in the measured values typically tend to zero
1/AN, whereN is the number of collisions, so for reliabl
results we needed very long runs withN5107 collisions or
more. The data also show that the largest Lyapunov ex
nent is positive, i.e., the motion is chaotic, and that two
the exponents are zero as expected.

We have chosen the coordinate axesx, y, and z aligned
with the lattice axes. Through the directions of the field ve
tors, we can have reversible or nonreversible dynamics in
model, with or without a Hamiltonian representation, ind
pendently. In the simulations, we fixedE along thex axis, so
that it lies in the symmetry planesy50 andz50, and con-
trolled the above properties by chosing the direction ofB
accordingly. In particular, the dynamics is reversible, e
for By50; meanwhile, there exists a Hamiltonian formul
tion as given in Sec. II C forBx50.
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FIG. 1. Time evolution of the measured Lya
punov exponentsl1.l2.•••.l6 in the 3DLG,
in dimensionless variables defined in Sec. II
The scatterers are balls with radiusR51 ar-
ranged in a cubic lattice with lattice constantd
52.3. The external fields areE5(0.3,0,0) and
B5(0,0.5 cosf,0.5 sinf) with f5p/20. The ar-
rows show the long-time values of the exponen
(t5108); l3 andl4 converge to 0 as expected
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Figure 1 shows the results of a simulation forB
5(0,B cosf,Bsinf) with f5p/20, i.e., for perpendicula
fields andwithout reversibility. In Fig. 2, we plotted the Lya
punov pair sums15l11l6 and its deviation from the othe
sums25l21l5 as functions of time. The sums converge
the same value, thus the CPR seems to hold in this case
also worth noticing that the differenceD(t)5s1(t)2s2(t)
disappears much faster~approximately as 1/t) than the fluc-
tuations in the individual sums. We have obtained sim
results for other values of the anglef, including reversible
flows ~e.g.,f50). These results demonstrate that reversi
ity is not needed for the CPR to hold.

In the second type of simulations, we have chosenB
5(B sinf,0,Bcosf), so that forfÞ0 the two field vectors
are not perpendicular and the Hamiltonian formulation
Sec. II C does not apply. The numerical Lyapunov spectr
looks qualitatively the same as in Fig. 1, but the sumss1 and
s2 seem to converge to different values as shown in Fig
for the anglef57p/20. In other words, the CPR is broke
in this case; other values offÞ0 have led to similar results
The difference between Figs. 2 and 3 is very clear: the qu
t is

r

l-

f

3

n-

tity D converges to zero quite fast if the CPR holds, while
stays definitely away from zero in the case without the CP

IV. CONCLUSIONS

We have demonstrated that in the GIK thermosta
3DLG, the CPR can be broken by an external magnetic fi
that is not perpendicular to the electric field. For perpendi
lar fields, however, the CPR holds, and the convergenc
the pair sums to each other seems to be much faster than
of the sums to their long-time value, indicating that the CP
is valid for all times in these cases just as in the 3DL
without magnetic field@5#. This phenomenon is called th
strong CPR. The perpendicular cases are also character
by the existence of a Hamiltonian formulation. There ex
other nontrivial examples for systems with the strong C
and a Hamiltonian formulation, too: e.g., the Gaussian iso
ergetic thermostat with a special interparticle potential@13#
or the ideal Sllod gas@14,10#. These examples suggest th
there may be a direct connection between the strong C
and the existence of a Hamiltonian formulation. We will e
amine this question in a separate paper@10#. Although we are
not aware of any counterexamples, the question concer
-
g-
FIG. 2. Time evolution of the sums15l1

1l6 ~solid line! and its deviationD from s2

5l21l5 ~dotted line! obtained for the same pa
rameters as in Fig. 1. The arrow shows the lon
time value of the sums (t5108).
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FIG. 3. Time evolution of the sumss1 ~solid
line! and s2 ~dotted line! for nonperpendicular
fields;B5(0.5 sinf,0,0.5 cosf) with f57p/20.
The arrows show the long-time values of th
sums (t5108). Notice the change of scales wit
respect to Fig. 2.
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the existence of systems with the strong CPR but withou
Hamiltonian formulation is still open.

Our results also show that time-reversal symmetry, or
versibility in general, is not needed for the CPR to ho
Indeed, one of the first examples for the CPR in dissipa
systems has been a Hamiltonian system with a constant
cous damping@15# that has no time-reversal symmetry.
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APPENDIX

We show that the flow defined by Eqs.~1!–~3! is revers-
ible with respect to the transformationGB5MG0 as given in
Sec. II B. Equation~7! can be rewritten for the time deriva
tive F of the flow asGFG52F. From Eq.~1!, one can see
thatF(q,p)5(p,f)T, with f(q,p) given by the expression fo
s

tt
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ṗ. Now we can write thatGBFGB(q,p)5GBF(Mq,2Mp)
5GB„2Mp,f(Mq,2Mp)…5„2p,2M f(Mq,2Mp)…T.
Comparison with (2p,2f)T gives us the condition

f~q,p!5M f~Mq,2Mp! ~A1!

for the force acting on the particle.
Sincef consists of the two parts of the Lorentz force a

the thermostat, we can check these terms separately. Fo
electric field, this means thatE5ME, i.e., E must be in the
invariant plane ofM. For the termp3B, the right-hand side
of Eq. ~A1! reads asM (2Mp3B)52M (pi3B2p'3B)
52M (pi3B)1M (p'3B), where pi and p' denote the
components ofp parallel and perpendicular to the invaria
plane ofM, respectively. IfB is in this plane, then2M (pi
3B)5pi3B and M (p'3B)5p'3B, so the magnetic par
of the Lorentz force also satisfies Eq.~A1!. As for the ther-
mostating force,M „(E•Mp)Mp…5(E•Mp)M2p5(E•p)p
also holds if E5ME. Thus the flow is reversed byGB
5MG0 if the field vectorsE andB are invariant underM.
ons
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