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Breaking conjugate pairing in thermostated billiards by a magnetic field
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We demonstrate that in the thermostated three-dimensional Lorentz gas, the symmetry of the Lyapunov
spectrum can be broken by adding to the system an external magnetic field not perpendicular to the electric
field. For perpendicular field vectors, there is a Hamiltonian reformulation of the dynamics and the conjugate
pairing rule still holds. This indicates that symmetric Lyapunov spectra have nothing to do with time-reversal
symmetry or reversibility; instead, it seems to be related to the existence of a Hamiltonian connection.

PACS numbdps): 05.45—-a, 05.70.Ln

[. INTRODUCTION In Sec. Il, the equations of motion for billiards with a GIK
thermostat in magnetic field are presented, together with a

Thermostated dynamical systems have raised considegiscussion of reversibility and the Hamiltonian connection
able interest recently as a testing ground for ideas in nonfor perpendicular fields. The numerical results for the 3DLG
equilibrium statistical mechani¢4]. In particular, questions and our conclusions are presented in Secs. Ill and IV, respec-
concerning the role played by chaotic dynamics in the aplively.
pearance of nonequilibrium stationary states in dissipative
systems have been in the focus of research actiyiZip©ne II. THERMOSTATED BILLIARDS IN MAGNETIC FIELD
of the most remarkable features of these models is that they
are dissipativeandtime reversal symmetric at the same time.
Some, but not all, thermostated systems have another inter- The kinetic energy of a particle moving under the influ-
esting common property known as tbenjugate pairing rule  ence of external fields can be kept constant by adding a spe-
(CPR: the Lyapunov exponents of the system form pairscial frictionlike force to the system. Since this force can be
summing up to the sanm@egative value[3]. With the CPR, deduced from Gauss’s principle of least constraint, and it is
one pair of Lyapunov exponents is enough to determine th&inetic energy that is kept constant, the technique is called
sum ofall the exponents, which is known to be connected tathe Gaussian isokinetiéGIK) thermostat[1]. In billiards,
the transport properties of the syst¢d]. The CPR is trivi-  this is equivalent of particle momentumchanging only in
ally present in conservative Hamiltonian systefttee sum  direction, but not in magnitudp, during the “free” flights
being zero due to symplecticityhowever, there is no obvi- between collisions with the hard-wall boundaries. Choosing
ous reason to expect anything similar in dissipative systemshe unit of mass to be the mass of the particle, the corre-
In fact, the CPR in thermostated systems was first discoveresponding equations of motion are
by numerical studieg3]. ) )

The simplest system in which the CPR can be checked is g=p, p=Fc—ap, (€h)
the three-dimensiondperiodig Lorentz gag3DLG): due to
its three degrees of freedom, it has four nontrivial Lyapunowvhereq=(x,y,z) is the position of the particle, stands for
exponents. Dettmanet al. have shown numericallis] that  the external forces, while the GIK thermostat corresponds to
the 3DLG with an external electric field and a Gaussian isothe choice
kinetic (GIK) thermostat exhibits conjugate pairing; later,

A. The dynamics

this was proven analytically for conservative forces and Fep

hard-wall scatterer§6]. It has also been demonstratgd a=—-. 2)
that this system can be connected to a Hamiltonian dynam- p

ics.

In this paper, we check the effect of an external magneti¢0r simplicity, we will choose length and time units in our
field on the validity of the CPR in the GIK thermostated Studies so thap=1, but care must be taken when substitut-
cubic lattice 3DLG. In particular, we will focus on two fea- ing 1 for p? in terms likea above, especially in the deriva-
tures possibly related to the CPR: reversibilign extension tion of tangent space equations for the calculation of
of time-reversal symmetjyand the existence of a Hamil- Lyapunov exponents.
tonian formulation. Both can be controlled by the direction In our model, the external fordg, contains theconstant
of the magnetic field with respect to that of the electric fieldelectric and magnetic fields andB:
and the lattice. Our numerical results show that the CPR is
not affected by breaking reversibility, and it also holds for Fe=E+pXB 3
cases with perpendicular electric- and magnetic-field vectors
for which there is a connection to Hamiltonian dynamics.(we have defined the unit of electric charge to be that of the
However, the CPR breaks down for nonperpendicular fieldsparticle. The full dynamics also includes the secular colli-
i.e., in the case when no Hamiltonian connection has beesions with the hard-wall boundaries, changing the momen-
found. tum p; to p; instantaneously:
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(4)

wherel is the (3x 3) identity matrix,n is the normal vector
of the boundary at the collision point, and’* denotes the

pr=(1—2n ° n)p;,
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holds only if we make explicit use of the constraint 1 and
its equivalentH =0 in the GIK and canonical equations, re-
spectively.

The extension of the Hamiltonian formulation to cases

diadic product. In our 3DLG, the scatterers are hard spheresith B+ 0 is not as obvious as for conservative systems be-

of radiusR, arranged into a regular cubic lattice with dis-

cause of the factoe® in front of P? in the “kinetic-energy”

tanced between the centers of nearest-neighbor scattererserm of the Hamiltonian. Nevertheless, we may still follow a

For simplicity, we choose the length scale so tRatl.

B. Reversibility
Without magnetic field, Egs(l) and (2) ensure time-

reversal symmetry for the dynamics, which means that for

each solutionl", (t) = (q(t),p(t))" there exists another one
tracing the same path backward in time:

F_()=(@(—t),—p(—t)". (5

The pairing of solutions by time-reversal symmetry is impor-
tant in these models: it is used, e.g., in showing that the

similar route by definingb(q) throughE=—-V® as usual
and replacing? by P—a(q) in H, where the vectoa(q) is
connected to the magnetic field. This leads to the Hamil-
tonian

Hg(Q,P)=z[e”(P—a)*~e ™ "]. ®
A lengthy but straightforward calculation shoyi<] that the
canonical equations fdig=0 can be connected to the GIK
equations of motion fop=1 by the transformation

a=Q,

p=e®(P-a) €)

average current flows in the direction of the external electriGs \ye assume the following relationship betweBrand a:

field [8]. This symmetry cannot hold B+ 0, but the more
general property afeversibility[9] may still be true, depend-
ing on the particular choice d& andB. Reversibility means
the existence of a transformati@hin phase space, which is
an involution(i.e., G2 is the identity mapping each solution
I' , (t) to another ond™ _(t) in the following manner:

F_(t)y=GI'.(—t). (6)
In terms of the phase-space flow' defined by I'(t)
= ¢'TI"(0), this requirement can be written as

Gg'G=9¢"", (7

i.e., bracketing the flow byG “reverses the direction of
time.”

Ordinary time-reversal symmetry is equivalent @
=G, just flippping the direction of the momentum:
Go(a,p)=(q,—p)". ForB+0, the flow can be reversed by
the transformatiortGg=MG,, whereM is a mirroring ofq
andp with respect to the plane containiigandB (the proof
of this statement is left to the Appendlixn the Lorentz gas,
reversibility of the full dynamics also requires that the invari-
ant plane ofM be a symmetry plane of the lattice, too. This

gives us an easy way to control reversibility in the Lorentz

gas: choosing directions f& andB in a symmetry plane of

no reversibility.

C. Hamiltonian formalism

A nontrivial result for GIK thermostated systems without
magnetic field is that a Hamiltonian formulation of the dy-
namics exists provided the forég is the gradient of a scalar
field —d(q) [7]. Then there is a Hamiltoniakl (Q,P) so
that the GIK equations of motion for the physical varialies

B=e®rota. (10)
Note that this is an extension of the usual relationdBip
=rota for the GIK thermostat. However, due to the presence
of e® in Eq. (10), we do not necessarily have a solutifor
arbitrary E and B. Indeed, sinceB must satisfy Maxwell’s
equation divB=0, this condition leads to the restriction
EB=0. Therefore, we can use the Hamiltonian formulation
given above only in the case whénis perpendicular td.

IIl. NUMERICAL RESULTS

We have calculated numerically the Lyapunov spectrum
of the GIK thermostated 3DLG with constant electric and
magnetic fields. The Lyapunov exponentg>A\,>---
>\ can be measured by following the evolution of a full set
of linearly independent tangent space vectors along a very
long trajectory and applying repeated reorthogonalization
and rescaling to them; see REE1] for a detailed description
of this method. Collisions were taken into account by the
formula presented in Reff12], with suitable modifications to
include the effect of the magnetic field. In all cases studied,
we have obtained finite time exponents converging to their
infinite time limits, as in the example plotted in Fig. 1. The
guctuations in the measured values typically tend to zero as
1/\N, whereN is the number of collisions, so for reliable
results we needed very long runs with=10 collisions or
more. The data also show that the largest Lyapunov expo-
nent is positive, i.e., the motion is chaotic, and that two of
the exponents are zero as expected.

We have chosen the coordinate axey, and z aligned
with the lattice axes. Through the directions of the field vec-
tors, we can have reversible or nonreversible dynamics in our
model, with or without a Hamiltonian representation, inde-

andp can be obtained from the canonical equations of mopendently. In the simulations, we fixédalong thex axis, so

tion for Q and P through a suitable coordinate transforma-
tion. It is straightforward to check that the Hamiltonian
H(Q,P)=%[e®P?—e~®] has canonical equations leading to
Eq. (1) if one assumes the transformatiogs=Q and p

that it lies in the symmetry plangs=0 andz=0, and con-
trolled the above properties by chosing the directionBof
accordingly. In particular, the dynamics is reversible, e.g.,
for B,=0; meanwhile, there exists a Hamiltonian formula-

=e®P. However, it is important to stress that this connectiontion as given in Sec. Il C foB,=0.
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FIG. 1. Time evolution of the measured Lya-

punov exponents;>\,>- - - >\g in the 3DLG,

in dimensionless variables defined in Sec. Il A.

The scatterers are balls with radil®&=1 ar-

< -—
° ranged in a cubic lattice with lattice constamt
=2.3. The external fields arE=(0.3,0,0) and
B=(0,0.5 cosp,0.5 sing) with ¢=7/20. The ar-
o5 | rows show the long-time values of the exponents
’ (t=108); N3 and ), converge to O as expected.
-1 1 1 h
o] 1000 2000 3000

Figure 1 shows the results of a simulation f&  tity A converges to zero quite fast if the CPR holds, while it
=(0,B cos¢,Bsing) with ¢= /20, i.e., for perpendicular stays definitely away from zero in the case without the CPR.
fields andwithoutreversibility. In Fig. 2, we plotted the Lya-
punov pair suns;=\;+Ag and its deviation from the other
sums,=\,+ A5 as functions of time. The sums converge to  We have demonstrated that in the GIK thermostated
the same value, thus the CPR seems to hold in this case. It 8DLG, the CPR can be broken by an external magnetic field
also worth noticing that the differenc&(t)=s,(t)—s,(t)  thatis not perpendicular to the electric field. For perpendicu-

disappears much fast@pproximate'y as l_y than the fluc- lar fielFZis, hOWeVer, the CPR hO|dS, and the convergence of
tuations in the individual sums. We have obtained similartn€ pair sums to each other seems to be much faster than that

results for other values of the angde including reversible of the sums to their long-time value, indicating that the CPR

- . . is valid for all times in these cases just as in the 3DLG
flows (e.g.,¢=0). These results demonstrate that rever3|b|I-Without magnetic field5]. This phenomenon is called the

ity is not needed for the CPR to hold. strong CPR. The perpendicular cases are also characterized
In the second type of simulations, we have cho&n py the existence of a Hamiltonian formulation. There exist
=(Bsin¢,0Bcosg), so that for¢p# 0 the two field vectors  gther nontrivial examples for systems with the strong CPR
are not perpendicular and the Hamiltonian formulation ofand a Hamiltonian formulation, too: e.g., the Gaussian isoen-
Sec. Il C does not apply. The numerical Lyapunov spectrungrgetic thermostat with a special interparticle poterftia]
looks qualitatively the same as in Fig. 1, but the ssmand  or the ideal Sllod ga§l4,10. These examples suggest that
s, seem to converge to different values as shown in Fig. 3here may be a direct connection between the strong CPR
for the angle¢=7/20. In other words, the CPR is broken and the existence of a Hamiltonian formulation. We will ex-
in this case; other values @f# 0 have led to similar results. amine this question in a separate pag€. Although we are
The difference between Figs. 2 and 3 is very clear: the quamot aware of any counterexamples, the question concerning

IV. CONCLUSIONS
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FIG. 2. Time evolution of the suns;=X\;
+X\g (solid line and its deviationA from s,
=\,+\5 (dotted ling obtained for the same pa-
0.04 | . rameters as in Fig. 1. The arrow shows the long-
time value of the sumst & 10°).
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FIG. 3. Time evolution of the sums; (solid
line) and s, (dotted ling for nonperpendicular
fields; B= (0.5 sin¢,0,0.5 cosp) with ¢="7/20.
The arrows show the long-time values of the
sums (=10%). Notice the change of scales with
respect to Fig. 2.
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the existence of systems with the strong CPR but without ®. Now we can write thaGgFGg(q,p) =GgF(Mg, —Mp)
Hamiltonian formulation is still open. =Gg(—Mp,f(Mg,—Mp))=(—p,— Mf(Mg,—Mp))".

Our results also show that time-reversal symmetry, or '€ omparison with ¢ p,—f)T gives us the condition
versibility in general, is not needed for the CPR to hold.
Indeed, one of the first examples for the CPR in dissipative
systems has been a Hamiltonian system with a constant vis- f(q,p)=Mf(Mqg,—Mp) (A1)
cous dampind15] that has no time-reversal symmetry.

for the force acting on the particle.
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